Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 13.209
1.
Cell ; 187(10): 2465-2484.e22, 2024 May 09.
Article En | MEDLINE | ID: mdl-38701782

Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.


Epigenesis, Genetic , Myelin Sheath , Oligodendroglia , Remyelination , Animals , Myelin Sheath/metabolism , Humans , Mice , Remyelination/drug effects , Oligodendroglia/metabolism , Central Nervous System/metabolism , Mice, Inbred C57BL , Rejuvenation , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Organoids/metabolism , Organoids/drug effects , Demyelinating Diseases/metabolism , Demyelinating Diseases/genetics , Cell Differentiation/drug effects , Small Molecule Libraries/pharmacology , Male , Regeneration/drug effects , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology
2.
Cells ; 13(8)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38667291

Both Hedgehog and androgen signaling pathways are known to promote myelin regeneration in the central nervous system. Remarkably, the combined administration of agonists of each pathway revealed their functional cooperation towards higher regeneration in demyelination models in males. Since multiple sclerosis, the most common demyelinating disease, predominates in women, and androgen effects were reported to diverge according to sex, it seemed essential to assess the existence of such cooperation in females. Here, we developed an intranasal formulation containing the Hedgehog signaling agonist SAG, either alone or in combination with testosterone. We show that SAG promotes myelin regeneration and presumably a pro-regenerative phenotype of microglia, thus mimicking the effects previously observed in males. However, unlike in males, the combined molecules failed to cooperate in the demyelinated females, as shown by the level of functional improvement observed. Consistent with this observation, SAG administered in the absence of testosterone amplified peripheral inflammation by presumably activating NK cells and thus counteracting a testosterone-induced reduction in Th17 cells when the molecules were combined. Altogether, the data uncover a sex-dependent effect of the Hedgehog signaling agonist SAG on the peripheral innate immune system that conditions its ability to cooperate or not with androgens in the context of demyelination.


Demyelinating Diseases , Testosterone , Animals , Female , Male , Demyelinating Diseases/immunology , Demyelinating Diseases/pathology , Demyelinating Diseases/drug therapy , Mice , Testosterone/pharmacology , Hedgehog Proteins/metabolism , Hedgehog Proteins/agonists , Mice, Inbred C57BL , Central Nervous System/drug effects , Central Nervous System/immunology , Central Nervous System/pathology , Central Nervous System/metabolism , Smoothened Receptor/metabolism , Smoothened Receptor/agonists , Myelin Sheath/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Immune System/drug effects , Microglia/drug effects , Microglia/metabolism , Microglia/immunology , Sex Characteristics
3.
Mult Scler Relat Disord ; 86: 105614, 2024 Jun.
Article En | MEDLINE | ID: mdl-38642495

INTRODUCTION: Predicting the conversion of clinically isolated syndrome (CIS) to clinically definite multiple sclerosis (CDMS) is critical to personalizing treatment planning and benefits for patients. The aim of this study is to develop an explainable machine learning (ML) model for predicting this conversion based on demographic, clinical, and imaging data. METHOD: The ML model, Extreme Gradient Boosting (XGBoost), was employed on the public dataset of 273 Mexican mestizo CIS patients with 10-year follow-up. The data was divided into a training set for cross-validation and feature selection, and a holdout test set for final testing. Feature importance was determined using the SHapley Additive Explanations library (SHAP). Then, two experiments were conducted to optimize the model's performance by selectively adding variables and selecting the most contributive variables for the final model. RESULTS: Nine variables including age, gender, schooling, motor symptoms, infratentorial and periventricular lesion at imaging, oligoclonal band in cerebrospinal fluid, lesion and symptoms types were significant. The model achieved an accuracy of 83.6 %, AUC of 91.8 %, sensitivity of 83.9 %, and specificity of 83.4 % in cross-validation. In the final testing, the model achieved an accuracy of 78.3 %, AUC of 85.8 %, sensitivity of 75 %, and specificity of 81.1 %. Finally, a web-based demo of the model was created for testing purposes. CONCLUSION: The model, focusing on feature selection and interpretability, effectively stratifies risk for treatment decisions and disability prevention in MS patients. It provides a numerical risk estimate for CDMS conversion, enhancing transparency in clinical decision-making and aiding in patient care.


Demyelinating Diseases , Disease Progression , Machine Learning , Multiple Sclerosis , Humans , Female , Multiple Sclerosis/diagnosis , Male , Adult , Demyelinating Diseases/diagnosis , Demyelinating Diseases/diagnostic imaging , Middle Aged , Mexico , Follow-Up Studies , Magnetic Resonance Imaging
4.
Brain Behav ; 14(4): e3487, 2024 Apr.
Article En | MEDLINE | ID: mdl-38648385

INTRODUCTION: Demyelination is a key factor in axonal degeneration and neural loss, leading to disability in multiple sclerosis (MS) patients. Transforming growth factor beta activated kinase 1 (TAK1) is a critical molecule involved in immune and inflammatory signaling pathways. Knockout of microglia TAK1 can inhibit autoimmune inflammation of the brain and spinal cord and improve the outcome of MS. However, it is unclear whether inhibiting TAK1 can alleviate demyelination. METHODS: Eight-week-old male c57bl/6j mice were randomly divided into five groups: (a) the control group, (b) the group treated with cuprizone (CPZ) only, (c) the group treated with 5Z-7-Oxozaenol (OZ) only, and (d) the group treated with both cuprizone and 15 µg/30 µg OZ. Demyelination in the mice of this study was induced by administration of CPZ (ig) at a daily dose of 400 mg/kg for consecutive 5 weeks. OZ was intraperitoneally administered at mentioned doses twice a week, starting from week 3 after beginning cuprizone treatment. Histology, rotarod test, grasping test, pole test, Western blot, RT-PCR, and ELISA were used to evaluate corpus callosum demyelination, behavioral impairment, oligodendrocyte differentiation, TAK1 signaling pathway expression, microglia, and related cytokines. RESULTS: Our results demonstrated that OZ protected against myelin loss and behavior impairment caused by CPZ. Additionally, OZ rescued the loss of oligodendrocytes in CPZ-induced mice. OZ inhibited the activation of JNK, p65, and p38 pathways, transformed M1 polarized microglia into M2 phenotype, and increased brain-derived neurotrophic factor (BDNF) expression to attenuate demyelination in CPZ-treated mice. Furthermore, OZ reduced the expression of proinflammatory cytokines and increases anti-inflammatory cytokines in CPZ-treated mice. CONCLUSION: These findings suggest that inhibiting TAK1 may be an effective approach for treating demyelinating diseases.


Cuprizone , Demyelinating Diseases , Lactones , Mice, Inbred C57BL , Microglia , Resorcinols , Zearalenone/administration & dosage , Animals , Cuprizone/pharmacology , Microglia/drug effects , Microglia/metabolism , Demyelinating Diseases/drug therapy , Demyelinating Diseases/chemically induced , Mice , Male , MAP Kinase Kinase Kinases/metabolism , Zearalenone/pharmacology , Zearalenone/analogs & derivatives , Cell Polarity/drug effects , Corpus Callosum/drug effects , Corpus Callosum/pathology , Corpus Callosum/metabolism , Disease Models, Animal
5.
Mult Scler Relat Disord ; 86: 105599, 2024 Jun.
Article En | MEDLINE | ID: mdl-38604004

OBJECTIVE: To compare diet and the modified dietary inflammatory index (mDII) between individuals with pediatric-onset multiple sclerosis (PoMS), monophasic acquired demyelinating syndromes (monoADS), and controls. METHODS: The association between diet, mDII, and disease status was examined in 131 individuals with PoMS/monoADS/controls (38/45/48) using logistic regression. RESULTS: The associations between diet and PoMS were modest, reaching significance for whole grain intake (adjusted odds ratio, aOR=0.964, 95 % confidence intervals, CI:0.934-0.995) but not mDII (aOR=1.20, 95 %CI:0.995-1.46) versus controls. No findings for monoADS reached significance versus controls. CONCLUSIONS: Individuals with PoMS, but not monoADS, had lower dietary whole grain intake than controls.


Multiple Sclerosis , Humans , Female , Male , Adolescent , Child , Diet/adverse effects , Diet/statistics & numerical data , Age of Onset , Inflammation , Whole Grains , Young Adult , Adult , Demyelinating Diseases
6.
Neurology ; 102(8): e209296, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38507676

A 35-year-old woman with a progressive, bilateral upper limb tremor, personality change, behavioral disturbance, and primary ovarian insufficiency was found to have AARS2-related leukodystrophy. She had congenital nystagmus which evolved to head titubation by age 8 years and then developed an upper limb tremor in her mid-teens. These symptoms stabilized during her 20s, but soon after this presentation at age 35 years, neurologic and behavioral disturbances progressed rapidly over a 12-month period requiring transition to an assisted living facility with care support (4 visits/day) and assistance for all activities of daily living. MRI of the brain demonstrated confluent white matter changes predominantly involving the frontal lobes consistent with a leukodystrophy. All other investigations were unremarkable. Nongenetic causes of a leukodystrophy including sexually transmitted diseases and recreational drug use were excluded. Family history was negative for similar symptoms. Gene panel testing identified compound heterozygous pathogenic AARS2 mutations. This case highlights the importance of MRI brain imaging in progressive tremor syndromes, the utility of gene panels in simultaneous testing of multiple disorders with overlapping phenotypes, and the need for awareness of comorbid endocrinological disorders in many of the genetic leukodystrophies, whose identification may aid in clinical diagnosis.


Demyelinating Diseases , Leukoencephalopathies , Neurodegenerative Diseases , Humans , Female , Adolescent , Adult , Child , Tremor/genetics , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/genetics , Activities of Daily Living , Mutation , Brain/diagnostic imaging , Brain/pathology
7.
Sci Rep ; 14(1): 7507, 2024 03 29.
Article En | MEDLINE | ID: mdl-38553515

Multiple Sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS), with a largely unknown etiology, where mitochondrial dysfunction likely contributes to neuroaxonal loss and brain atrophy. Mirroring the CNS, peripheral immune cells from patients with MS, particularly CD4+ T cells, show inappropriate mitochondrial phenotypes and/or oxidative phosphorylation (OxPhos) insufficiency, with a still unknown contribution of mitochondrial DNA (mtDNA). We hypothesized that mitochondrial genotype in CD4+ T cells might influence MS disease activity and progression. Thus, we performed a retrospective cross-sectional and longitudinal study on patients with a recent diagnosis of either Clinically Isolated Syndrome (CIS) or Relapsing-Remitting MS (RRMS) at two timepoints: 6 months (VIS1) and 36 months (VIS2) after disease onset. Our primary outcomes were the differences in mtDNA extracted from CD4+ T cells between: (I) patients with CIS/RRMS (PwMS) at VIS1 and age- and sex-matched healthy controls (HC), in the cross-sectional analysis, and (II) different diagnostic evolutions in PwMS from VIS1 to VIS2, in the longitudinal analysis. We successfully performed mtDNA whole genome sequencing (mean coverage: 2055.77 reads/base pair) in 183 samples (61 triplets). Nonetheless, mitochondrial genotype was not associated with a diagnosis of CIS/RRMS, nor with longitudinal diagnostic evolution.


Demyelinating Diseases , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/genetics , T-Lymphocytes , Cross-Sectional Studies , Longitudinal Studies , Retrospective Studies , Multiple Sclerosis, Relapsing-Remitting/genetics , DNA, Mitochondrial/genetics , CD4-Positive T-Lymphocytes , Genotype
8.
J Neurol ; 271(5): 2370-2378, 2024 May.
Article En | MEDLINE | ID: mdl-38502339

The widespread use of magnetic resonance imaging (MRI) has led to increased detection of individuals exhibiting asymptomatic brain and spinal cord lesions suggestive of multiple sclerosis (MS), defined as "radiologically isolated syndrome" (RIS). Specific criteria have been proposed and updated over time to identify individuals with RIS. Moreover, a younger age, the presence of infratentorial, spinal cord or gadolinium-enhancing lesions, as well as of cerebrospinal fluid-specific oligoclonal bands have been recognized as relevant risk factors for the occurrence of a first clinical event. Recent randomized controlled trials conducted in individuals with RIS have shown that dimethyl fumarate and teriflunomide significantly reduce the occurrence of clinical events in this population. These findings support the notion that early treatment initiation may positively influence the prognosis of these patients. However, several aspects should be taken into account before treating individuals with RIS in the real-world clinical setting, including an accurate identification of individuals with RIS to avoid misdiagnosis, a precise stratification of their risk of experiencing a first clinical event and further data supporting favorable balance between benefits and risks, even in the long term. This commentary provides an overview of the latest updates in RIS diagnosis, prognosis, and emerging treatment evidence.


Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/diagnosis , Magnetic Resonance Imaging , Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/drug therapy
9.
Sci Rep ; 14(1): 7293, 2024 03 27.
Article En | MEDLINE | ID: mdl-38538701

Optic neuritis is often an initial symptom in multiple sclerosis (MS) or clinically isolated syndrome (CIS), yet comprehensive studies using the 2017 McDonald criteria for MS are scarce. Patient records from our academic centre (2010-2018) were reviewed. Using the 2017 McDonald criteria, three groups were formed: MS optic neuritis (optic neuritis with confirmed MS), CIS optic neuritis (optic neuritis without confirmed MS) and suspected optic neuritis (sON). We compared clinical and paraclinical findings among the groups to identify predictors for CIS- or MS-optic neuritis. The study included 129 MS, 108 CIS, and 44 sON cases. The combination of visual impairment, dyschromatopsia, and retrobulbar pain was observed in 47% of MS patients, 42% of CIS patients, and 30% of sON patients. Dyschromatopsia was the strongest indicator of MS or CIS diagnosis in the backward regression model. 56% of MS patients had relative afferent pupillary defect, 61% optic nerve anomalies within magnetic resonance imaging, and 81% abnormal visual evoked potentials. Our results emphasize the challenges in diagnosing optic neuritis, as not all patients with objectively diagnosed MS exhibit the triad of typical symptoms. To address potentially missing clinical features, incorporating additional paraclinical findings is proposed.


Demyelinating Diseases , Multiple Sclerosis , Optic Neuritis , Humans , Evoked Potentials, Visual , Optic Neuritis/diagnosis , Optic Neuritis/pathology , Multiple Sclerosis/complications , Multiple Sclerosis/diagnosis , Multiple Sclerosis/pathology , Demyelinating Diseases/diagnosis , Optic Nerve/diagnostic imaging , Optic Nerve/pathology , Magnetic Resonance Imaging/methods
10.
Genes (Basel) ; 15(3)2024 Mar 11.
Article En | MEDLINE | ID: mdl-38540409

INTRODUCTION: Alexander disease (AxD) is a rare neurodegenerative condition that represents the group of leukodystrophies. The disease is caused by GFAP mutation. Symptoms usually occur in the infantile age with macrocephaly, developmental deterioration, progressive quadriparesis, and seizures as the most characteristic features. In this case report, we provide a detailed clinical description of the neonatal type of AxD. METHOD: Next-Generation Sequencing (NGS), including a panel of 49 genes related to Early Infantile Epileptic Encephalopathy (EIEE), was carried out, and then Whole Exome Sequencing (WES) was performed on the proband's DNA extracted from blood. CASE DESCRIPTION: In the first weeks of life, the child presented with signs of increased intracranial pressure, which led to ventriculoperitoneal shunt implementation. Recurrent focal-onset motor seizures with secondary generalization occurred despite phenobarbital treatment. Therapy was modified with multiple anti-seizure medications. In MRI contrast-enhanced lesions in basal ganglia, midbrain and cortico-spinal tracts were observed. During the diagnostic process, GLUT-1 deficiency, lysosomal storage disorders, organic acidurias, and fatty acid oxidation defects were excluded. The NGS panel of EIEE revealed no abnormalities. In WES analysis, GFAP missense heterozygous variant NM_002055.5: c.1187C>T, p.(Thr396Ile) was detected, confirming the diagnosis of AxD. CONCLUSION: AxD should be considered in the differential diagnosis in all neonates with progressive, intractable seizures accompanied by macrocephaly.


Alexander Disease , Bone Diseases , Demyelinating Diseases , Drug Resistant Epilepsy , Hyponatremia , Lysosomal Storage Diseases , Megalencephaly , Spasms, Infantile , Child , Infant, Newborn , Humans , Alexander Disease/genetics , Alexander Disease/pathology , Glial Fibrillary Acidic Protein/genetics , Megalencephaly/genetics
11.
Inflammopharmacology ; 32(2): 1295-1315, 2024 Apr.
Article En | MEDLINE | ID: mdl-38512652

Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system that injures the myelin sheath, provoking progressive axonal degeneration and functional impairments. No efficient therapy is available at present to combat such insults, and hence, novel safe and effective alternatives for MS therapy are extremely required. Rutin (RUT) is a flavonoid that exhibits antioxidant, anti-inflammatory, and neuroprotective effects in several brain injuries. The present study evaluated the potential beneficial effects of two doses of RUT in a model of pattern-III lesion of MS, in comparison to the conventional standard drug; dimethyl fumarate (DMF). Demyelination was induced in in male adult C57BL/6 mice by dietary 0.2% (w/w) cuprizone (CPZ) feeding for 6 consecutive weeks. Treated groups received either oral RUT (50 or 100 mg/kg) or DMF (15 mg/kg), along with CPZ feeding, for 6 consecutive weeks. Mice were then tested for behavioral changes, followed by biochemical analyses and histological examinations of the corpus callosum (CC). Results revealed that CPZ caused motor dysfunction, demyelination, and glial activation in demyelinated lesions, as well as significant oxidative stress, and proinflammatory cytokine elevation. Six weeks of RUT treatment significantly improved locomotor activity and motor coordination. Moreover, RUT considerably improved remyelination in the CC of CPZ + RUT-treated mice, as revealed by luxol fast blue staining and transmission electron microscopy. Rutin also significantly attenuated CPZ-induced oxidative stress and inflammation in the CC of tested animals. The effect of RUT100 was obviously more marked than either that of DMF, regarding most of the tested parameters, or even its smaller tested dose. In silico docking revealed that RUT binds tightly within NF-κB at the binding site of the protein-DNA complex, with a good negative score of -6.79 kcal/mol. Also, RUT-Kelch-like ECH-associated protein 1 (Keap1) model clarifies the possible inhibition of Keap1-Nrf2 protein-protein interaction. Findings of the current study provide evidence for the protective effect of RUT in CPZ-induced demyelination and behavioral dysfunction in mice, possibly by modulating NF-κB and Nrf2 signaling pathways. The present study may be one of the first to indicate a pro-remyelinating effect for RUT, which might represent a potential additive benefit in treating MS.


Demyelinating Diseases , Multiple Sclerosis , Neurodegenerative Diseases , Neuroprotective Agents , Male , Animals , Mice , Multiple Sclerosis/chemically induced , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Cuprizone/adverse effects , Kelch-Like ECH-Associated Protein 1/metabolism , Demyelinating Diseases/chemically induced , Demyelinating Diseases/drug therapy , Demyelinating Diseases/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , NF-kappa B/metabolism , Rutin/pharmacology , NF-E2-Related Factor 2/metabolism , Neurodegenerative Diseases/drug therapy , Mice, Inbred C57BL , Disease Models, Animal
12.
Sci Rep ; 14(1): 7487, 2024 03 29.
Article En | MEDLINE | ID: mdl-38553491

This randomized controlled trial aimed to evaluate the safety and efficacy of proactive versus reactive desmopressin (DDAVP) strategies in treating severe symptomatic hyponatremia. Conducted from June 20, 2022, to February 20, 2023, it involved 49 patients with serum sodium levels below 125 mmol/L. Patients were assigned to either the proactive group, receiving DDAVP immediately upon diagnosis, or the reactive group, receiving DDAVP only if the serum sodium level tended to be overcorrected. The primary outcome was the incidence of overcorrection. The study revealed no significant difference in the overcorrection incidence between the proactive (16.7%) and reactive (28%) groups (p = 0.54). The change in serum sodium levels at 1, 6, 12, and 24 h were not different, however, at 48 h, the proactive group exhibited a higher but still safe change in serum sodium levels compared to the reactive group (10.3 ± 3.6 mmol/L vs. 7.7 ± 3.6 mmol/L, p = 0.013). Other parameters including time to symptom improvement, total intravenous fluid administered, DDAVP dose, urine volume, hospital stay duration, osmotic demyelination syndrome incidence, and 28-day mortality did not significantly differ between the groups. In conclusion, our findings suggest that there was no significant disparity in overcorrection rates between proactive and reactive DDAVP strategies for treating severe symptomatic hyponatremia. However, further large-scale studies are warranted to validate these results.


Demyelinating Diseases , Hyponatremia , Humans , Hyponatremia/etiology , Deamino Arginine Vasopressin/adverse effects , Demyelinating Diseases/drug therapy , Hospitals , Sodium
13.
J Neurol Sci ; 459: 122969, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38507990

Multiple Sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS) characterized by damage to the myelin sheaths of oligodendrocytes. Currently, there is no specific biomarker to identify the disease; however, a diagnostic criterion has been established based on patient's clinical, laboratory, and imaging characteristics, which assists in identifying this condition. The primary method for diagnosing MS is the McDonald criteria, first described in 2001 and revised in the years 2005, 2012, and 2017. These criteria have been continuously reviewed to enhance specificity and sensitivity in the diagnosis of MS, thereby reducing errors in its differential diagnosis. An important differential diagnosis that shares overlapping features with MS, mainly the progressive forms, are leukodystrophies with demyelination as underlying pathology. Leukodystrophies comprise a rare group of genetically determined disorders that lead to either demyelination or hypomyelination of the central nervous system that can result neuroimaging changes as well as clinical findings similar to those observed in MS. Thus, systematic evaluation encompassing clinical presentation, neuroimaging findings, and laboratory metrics proves indispensable for a differential diagnosis. As such, this study aimed to establish, clearly and objectively, the similarities and differences between MS and the main demyelinating leukodystrophies. The study analyzed the parameters of the McDonald criteria, including clinical, laboratory, and magnetic resonance imaging aspects, as found in patients with leukodystrophies through scoping literature review. The data were compared with the determinations of the revised 2017 McDonald criteria to facilitate the differential diagnosis of these diseases in clinical practice.


Demyelinating Diseases , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Diagnosis, Differential , Demyelinating Diseases/diagnosis , Central Nervous System , Magnetic Resonance Imaging/methods
15.
Neuropathol Appl Neurobiol ; 50(2): e12967, 2024 Apr.
Article En | MEDLINE | ID: mdl-38448224

AIM: The morphometry of sural nerve biopsies, such as fibre diameter and myelin thickness, helps us understand the underlying mechanism of peripheral neuropathies. However, in current clinical practice, only a portion of the specimen is measured manually because of its labour-intensive nature. In this study, we aimed to develop a machine learning-based application that inputs a whole slide image (WSI) of the biopsied sural nerve and automatically performs morphometric analyses. METHODS: Our application consists of three supervised learning models: (1) nerve fascicle instance segmentation, (2) myelinated fibre detection and (3) myelin sheath segmentation. We fine-tuned these models using 86 toluidine blue-stained slides from various neuropathies and developed an open-source Python library. RESULTS: Performance evaluation showed (1) a mask average precision (AP) of 0.861 for fascicle segmentation, (2) box AP of 0.711 for fibre detection and (3) a mean intersection over union (mIoU) of 0.817 for myelin segmentation. Our software identified 323,298 nerve fibres and 782 fascicles in 70 WSIs. Small and large fibre populations were objectively determined based on clustering analysis. The demyelination group had large fibres with thinner myelin sheaths and higher g-ratios than the vasculitis group. The slope of the regression line from the scatter plots of the diameters and g-ratios was higher in the demyelination group than in the vasculitis group. CONCLUSION: We developed an application that performs whole slide morphometry of human biopsy samples. Our open-source software can be used by clinicians and pathologists without specific machine learning skills, which we expect will facilitate data-driven analysis of sural nerve biopsies for a more detailed understanding of these diseases.


Demyelinating Diseases , Peripheral Nervous System Diseases , Vasculitis , Humans , Sural Nerve , Biopsy , Machine Learning
16.
PLoS One ; 19(3): e0298208, 2024.
Article En | MEDLINE | ID: mdl-38427650

The taiep rat is a tubulin mutant with an early hypomyelination followed by progressive demyelination of the central nervous system due to a point mutation in the Tubb4a gene. It shows clinical, radiological, and pathological signs like those of the human leukodystrophy hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC). Taiep rats had tremor, ataxia, immobility episodes, epilepsy, and paralysis; the acronym of these signs given the name to this autosomal recessive trait. The aim of this study was to analyze the characteristics of somatosensory evoked potentials (SSEPs) and motor evoked potentials (MEPs) in adult taiep rats and in a patient suffering from H-ABC. Additionally, we evaluated the effects of 4-aminopyridine (4-AP) on sensory responses and locomotion and finally, we compared myelin loss in the spinal cord of adult taiep and wild type (WT) rats using immunostaining. Our results showed delayed SSEPs in the upper and the absence of them in the lower extremities in a human patient. In taiep rats SSEPs had a delayed second negative evoked responses and were more susceptible to delayed responses with iterative stimulation with respect to WT. MEPs were produced by bipolar stimulation of the primary motor cortex generating a direct wave in WT rats followed by several indirect waves, but taiep rats had fused MEPs. Importantly, taiep SSEPs improved after systemic administration of 4-AP, a potassium channel blocker, and this drug induced an increase in the horizontal displacement measured in a novelty-induced locomotor test. In taiep subjects have a significant decrease in the immunostaining of myelin in the anterior and ventral funiculi of the lumbar spinal cord with respect to WT rats. In conclusion, evoked potentials are useful to evaluate myelin alterations in a leukodystrophy, which improved after systemic administration of 4-AP. Our results have a translational value because our findings have implications in future medical trials for H-ABC patients or with other leukodystrophies.


Demyelinating Diseases , Hereditary Central Nervous System Demyelinating Diseases , White Matter , Rats , Humans , Animals , Rats, Mutant Strains , 4-Aminopyridine/pharmacology , Demyelinating Diseases/drug therapy , Demyelinating Diseases/genetics , Cerebellum , Basal Ganglia , Evoked Potentials , Walking , Atrophy
18.
Mult Scler Relat Disord ; 85: 105521, 2024 May.
Article En | MEDLINE | ID: mdl-38457882

PURPOSE: To compare the efficacy of treatment of optic neuritis (ON) with corticosteroids (CTC) alone, CTC+plasmapheresis (PLP), and CTC+intravenous immunoglobulin (IVIG). DESIGN: After an episode of ON, although visual recovery is usually good, some patients may have significant visual sequelae. While the efficacy of first-line CTC is now indisputable, there is no consensus on the nature of second-line treatment. To date, no systematic review has compared the efficacy of treatment of ON with CTC alone, CTC+plasmapheresis (PLP), and CTC+intravenous immunoglobulin (IVIG). A meta-analysis is needed to compare the efficacy of PLP and IVIG in steroid-resistant ON. METHODS: This systematic review included all studies comparing at least two of the three treatments for steroid-resistant ON (CTC alone, CTC+PLP, and CTC+IVIG). From all articles published on PubMed between January 2000 and June 2022, two independent ophthalmologists selected studies of interest using the PRISMA method. Methodology, patient characteristics, and outcomes were identified. A network metaanalysis was then performed to compare the efficacy of the three treatments. RESULTS: Six comparative studies were included, representing 209 patients. The percentage of significant visual recovery after CTC alone, CTC+PLP, and CTC+IVIG in the acute treatment of steroid-resistant ON was 30 %, 45 %, and 77 %, respectively. Comparison of CTC+IVIG vs CTC alone, CTC+PLP vs CTC only, and CTC+PLP vs CTC+IVIG yielded odds ratios of 12.81, 2.47, and 0.19 respectively. CONCLUSION: Treatment of steroid-resistant ON with CTC+PLP or CTC+IVIG is more effective than treatment with CTC alone. Although no study has directly compared the two treatments, IVIG may be more effective than PLP.


Adrenal Cortex Hormones , Immunoglobulins, Intravenous , Network Meta-Analysis , Optic Neuritis , Plasmapheresis , Optic Neuritis/drug therapy , Optic Neuritis/therapy , Humans , Immunoglobulins, Intravenous/administration & dosage , Immunoglobulins, Intravenous/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/administration & dosage , Plasmapheresis/methods , Combined Modality Therapy , Immunologic Factors/administration & dosage , Demyelinating Diseases/drug therapy , Demyelinating Diseases/therapy
19.
Mult Scler Relat Disord ; 85: 105537, 2024 May.
Article En | MEDLINE | ID: mdl-38460252

BACKGROUND: Many different pathologies may underlie tumefactive demyelinating lesions. Identifying clinical and radiologic distinguishing features before pathologic examination is essential for diagnosis and treatment. In this study, we aimed to determine the clinical and radiologic features affecting the etiology and disease course of patients with tumefactive lesions (TDL). MATERIALS AND METHODS: We included 35 clinicoradiologically or histologically diagnosed TDL patients in our center over 11 years. Patient records were retrospectively evaluated and recorded. Clinical features, cerebral neuroimaging, and histologic biopsy preparations, if any, were assessed by three independent neurologists, two neuroradiologists, and two pathologists at admission and follow-up, respectively. RESULTS: The mean age of patients with TDL was 40.02±14.40 years. Symptom onset was 15 (1-365) days. The most common complaints at initial presentation were hemiparesis or hemiplegia, sensory complaints, and cognitive impairment (aphasia or apraxia). The lesions were most commonly localized in the frontal lobe (42.9 %). Mass effect was 17.1 %, edema 60 %, diffusion restriction 62.1 %, and contrast enhancement 71.9 % (mostly ring-shaped (68.8 %)) on MR images. Acute onset and OCB type-2 positivity were associated with MS diagnosis. On the other hand, CSF protein levels above 45 mg/dL were found to be related to non-MS etiologies. Only the predominance of aphasia or apraxia at onset was a risk factor for early high disability (EDSS>4; 3rd month). Subacute-chronic onset, being older than 40 years, or having brainstem symptoms at onset were independent risk factors for late high disability (2nd year). CONCLUSION: Acute onset or OCB type 2 positivity is a clue for early diagnosis of MS, while elevated CSF protein is a clue for demyelinating diseases other than MS. Presentation with cognitive dysfunction at onset is an independent risk factor for early disability, while age above 40 years, subacute-chronic presentation and brainstem findings at presentation are independent risk factors for late disability.


Magnetic Resonance Imaging , Multiple Sclerosis , Humans , Female , Male , Adult , Middle Aged , Multiple Sclerosis/diagnosis , Multiple Sclerosis/pathology , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/complications , Retrospective Studies , Prognosis , Demyelinating Diseases/diagnosis , Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/etiology , Demyelinating Diseases/pathology , Young Adult , Brain/diagnostic imaging , Brain/pathology
20.
Mult Scler ; 30(6): 664-673, 2024 May.
Article En | MEDLINE | ID: mdl-38481083

BACKGROUND: Serum neurofilament light (sNfL) reflects neuroaxonal damage and is now used as an outcome in treatment trials of relapsing-remitting multiple sclerosis (RRMS). However, the diagnostic properties of sNfL for monitoring disease activity in individual patients warrant further investigations. METHOD: Patients with suspected relapse and/or contrast-enhancing lesions (CELs) were consecutively included and performed magnetic resonance imaging (MRI) of the brain at baseline and weeks 28 and 48. Serum was obtained at baseline and 2, 4, 8, 16, 24, and 48 weeks. Neurofilament light concentration was measured using Single molecule array technology. RESULTS: We included 44 patients, 40 with RRMS and 4 with clinically isolated syndrome. The median sNfL level peaked at 2 weeks post-baseline (14.6 ng/L, interquartile range (IQR); 9.3-31.6) and reached nadir at 48 weeks (9.1 ng/L, IQR; 5.5-15.0), equivalent to the median sNfL of controls (9.1 ng/L, IQR; 7.4-12). A baseline Z-score of more than 1.1 (area under the curve; 0.78, p < 0.0001) had a sensitivity of 81% and specificity of 70% to detect disease activity. CONCLUSION: One out of five patients with relapse and/or CELs did not change significantly in post-baseline sNfL levels. The utility of repeated sNfL measurements to monitor disease activity is complementary rather than a substitute for clinical and MRI measures.


Biomarkers , Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting , Neurofilament Proteins , Humans , Female , Neurofilament Proteins/blood , Male , Adult , Multiple Sclerosis, Relapsing-Remitting/blood , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Prospective Studies , Middle Aged , Biomarkers/blood , Brain/diagnostic imaging , Brain/pathology , Demyelinating Diseases/blood , Demyelinating Diseases/diagnostic imaging
...